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Abstract: Effective warehouse management plays a key role in optimising supply chain operations and ensuring on-time
delivery of goods. As logistics systems become increasingly complex, the need for data-driven approaches and advanced
planning tools becomes essential. This work focuses on integrating input data processing and simulation-based modelling
for warehouse logistics planning using TX Plant Simulation, a powerful tool for modelling, simulating, and optimising
discrete-event logistics systems. The presented article aims to show how accurate input data processing combined with
simulation support can contribute to more efficient warehouse layout, improved material flow, and resource optimisation.
In our case, this involves the creation and testing of a simulation model of a new warehouse. The first phase involves the
collection and analysis of real or realistically generated input data related to warehouse operations, such as inbound and
outbound flows, order picking strategies, storage methods, transport routes, and resource utilisation. The data required for
the analysis were processed based on data available from previous periods from warehouse management within the original
warehouse. This data thus formed a relevant input base for creating a simulation model that replicates real warchouse
movements. This data is then cleaned, structured, and prepared for use in a simulation environment. Using TX Plant
Simulation, a digital twin of the warehouse system is created to test different planning scenarios. Simulation experiments
provide valuable insights into the impact of layout configurations, planning strategies, and process improvements. In
addition, simulation allows for the safe testing of optimisation strategies without disrupting real operations. The results
highlight the importance of high-quality input data and proper model calibration for reliable simulation results. The
simulation findings support decision-making processes in warehouse planning and help identify areas for cost reduction,
capacity improvement, and increased operational flexibility. The integration of data analysis and simulation tools proves to
be an effective approach to solving real-world challenges in warehouse management. This study confirms the potential of
TX Plant Simulation as a decision-support tool in logistics engineering and highlights the value of data-driven planning in
the context of modern warehouse systems. The proposed methodology can be applied for academic research and industrial
practice for strategic and operational planning of warehouse processes.
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1. INTRODUCTION

Decision-making regarding the appropriate inventory management model within warehouse operations should
be based on a clearly defined problem and key assumptions that significantly impact the performance of the
entire supply system. Effective warehouse management requires bridging the gap between theory and practice
and building a database of relevant input data. These inputs are the foundation for objective analysis, monitoring
stock development, and optimising warehouse processes [1-3].

Many theoretical models remain unused in practice due to the lack of high-quality data and limited applicability
to real business conditions. Therefore, it is important to promote an approach that connects academic research
with business practice and generates effective, practical recommendations for daily inventory management.

In real-world conditions, particularly in larger organisations, stock levels often reflect uncoordinated decisions
made by individual departments, leading to partial optimisation and decreased overall efficiency of warehouse
operations. These negative impacts can be reduced through improved data collection, evaluation, and
information sharing across the company [4,5].

A potential solution is the implementation of software tools that ensure transparency, integrate data, and enable
effective inventory management in warechouses based on real needs and accurate data. Such systems can
significantly enhance the reliability, responsiveness, and overall performance of enterprise logistics processes
[6-8].
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In the context of warehouse inventory management, the traditional Material Requirements Planning (MRP)
system has long been a widely used approach. This system relies on fixed parameters such as scheduled delivery
times, production cycles, and minimum stock levels. While MRP is effective in stable environments with
predictable demand, it faces significant limitations in today’s dynamic and volatile market conditions [9,10].
One of its main drawbacks is low flexibility and the inability to respond quickly to demand fluctuations.
Because MRP is based on static assumptions, it often leads to excess inventory or stockouts, resulting in
inefficient use of warehouse capacity and increased operational costs. Therefore, there is a growing need to
implement inventory control systems that can adapt to changing market conditions and customer demands.
Adaptive warehouse management involves real-time responsiveness, working with up-to-date input data, and
making decisions based on actual consumption and accurate forecasting. Increasing adaptability requires not
only modern software solutions but also a shift in management philosophy—from reactive planning to
continuous data evaluation and dynamic decision-making. An example of such an approach is the DDMRP
(Demand-Driven MRP) methodology, which focuses on demand-based inventory management and enables
greater flexibility in supply and warehouse processes [11-13]. Ultimately, the goal is to build warehouse
systems that not only monitor current inventory levels but also optimize them in line with market movements
and changes in customer behavior. Adaptive systems thus represent a key prerequisite for increasing a
company’s competitiveness in a digital and unpredictable business environment. TX Plant Simulation is a
software focused on creating discrete event simulations (DES). It provides a range of easy-to-use tools for
analysing models with deterministic and stochastic processes, calculating the distribution of sample values,
managing simulation experiments, and determining optimised parameters of the tested system. By simulating a
model of an existing production system, it is possible to modify various variables. The simulation model can be
used for the evaluation process and for testing extreme case scenarios in a simulation-set time interval (e.g. a
year) that would not be possible to test in reality due to safety issues, regulations, etc. The simulation can also
be extended to test the potential for implementing lean manufacturing principles, which are supported by TX
Plant Simulation software, and thus arrive at outputs that can be compared with the real production system. The
optimisation capabilities of TX Plant Simulation support users in optimising multiple system parameters at
once, such as the number of conveyors (carts), buffer/storage capacity, etc., while taking into account multiple
evaluation criteria, such as reduced inventory, increased utilisation, increased throughput, etc. [ 14-16].

2. MATERIALS AND METHODS

The methodological framework integrates data-driven analysis, discrete-event simulation, and demand-driven
inventory planning to support the design and performance evaluation of a new warehouse system. The approach
consists of five phases: (1) data acquisition and preprocessing, (2) process analysis and warehouse-flow
modelling, (3) development of a digital simulation model in TX Plant Simulation, (4) model verification and
validation, and (5) optimisation experiments including DDMRP integration.

Data Acquisition and Preprocessing: Operational data from the collaborating manufacturing—distribution
company were collected, cleaned, and transformed into a structured simulation dataset. The annual dataset
included inbound/outbound pallet flows, order structures, turnover dynamics across chilled, frozen, and dry-
goods segments, seasonal peaks, replenishment behaviour, and product-group projections to 2030. Given the
presence of perishable goods, batch tracking and shelf-life characteristics were incorporated. Statistical analysis
was used to derive process-time distributions, interarrival patterns, and variability parameters required for
stochastic modelling.

Process Analysis and System Modelling: A detailed analysis of existing and planned warehouse processes was
conducted, covering receiving, internal transport, picking and replenishment, dispatching, and inter-zone
movements. The modelled layout reflects the real facility, comprising three storage areas (400 chilled, 300
frozen, 120 dry pallets). Material-flow diagrams and activity sequences defined resource interactions, routing
logic, and operational constraints, forming the basis for the digital twin.

Simulation Model Development in TX Plant Simulation: A discrete-event model combining 2D logic and 3D
visualisation was implemented. Model components comprise storage racks and buffers, forklifts and transport
resources, operator workflows, routing mechanisms, and SIM Talk scripts for prioritisation and material-
handling logic. The model represents deterministic and stochastic processes and supports scenario testing for
regular operations, peak loads, and forecasted future demand. DDMRP buffer logic (decoupling points, buffer
zones, colour-coded levels) was embedded to simulate demand-driven behaviours.
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Model Verification and Validation: Verification was performed through iterative checks of element behaviour,
logical sequencing, resource synchronisation, routing consistency, and FEFO/FIFO rules. Validation relied on
comparison with historical data, focusing on pallet throughput, storage duration, picking times, forklift
utilisation, and daily flow profiles. Deviations remained within acceptable statistical thresholds, confirming
model fidelity.

Simulation-Based Forecasting and Scenario Analysis: Demand projections until 2030 were derived from
company growth coefficients and translated into category-specific storage forecasts. The model was executed
under baseline, annual forecast, peak-day, alternative-layout, and DDMRP/non-DDMRP scenarios. Performance
was assessed using lead time, resource utilisation, handling intensity, storage occupancy, and service-level
metrics.

Integration of DDMRP Logic: DDMRP elements were operationalised within the simulation through explicit
modelling of decoupling points, buffer protection levels, dynamic replenishment signals (Net Flow Position),
and real-time adjustment of replenishment quantities. Resulting stock-behaviour patterns under varying demand
conditions were analysed.

3. RESULTS AND DISCUSSION

The presented study focuses on testing a warehouse with a wide range of products with a limited shelf life while
simultaneously providing permanent availability of high-turnover items. It will take into account seasonal
fluctuations in sales. The goal will be to achieve effective picking solutions while increasing the productivity of
warehouse and picking activities. The problem with perishable products is that on the same pallet or shelf there
are often several production batches with several expiration dates. This limits the ability to identify product data,
it takes an extremely long time to manually determine expiration dates. The inability to access product data
regarding their shelf life promptly can hinder inventory management and monitor products just before
expiration, which contributes to higher product expiration in warehouses. Input information for the simulation
of product movement in individual warehouses was processed in cooperation with the manufacturing-
distributive company. The days in the months that represent the largest volume for the company from a seasonal
perspective, when there is an increased need to stock input raw materials and processed products, Table 1 was
selected.

Table 1. Frozen items for June 2021 - measured values, selection

Number of | Number of . . Number of pallets in .
Month | pallets fr‘om pallets from |Other suppliers| Arrived IN (sum) the warehouse Difference
production BA

1.6.2021 7 17 3 27 1100 22
2.6.2021 6 14 1105 11
3.6.2021 4 0 16 20 1108 18
4.6.2021 4 13 4 21 1110 19
5.6.2021 1112

6.6.2021 1112

7.6.2021 5 5 16 26 1112 23
8.6.2021 7 10 1 18 1115 22
9.6.2021 6 10 17 1111 11
10.6.2021 4 4 40 48 1117 33
11.6.2021 0 15 38 53 1132 27
12.6.2021 1158

13.6.2021 1158

14.6.2021 0 0 9 9 1158 59
15.6.2021 7 35 43 1108 28
16.6.2021 6 9 50 65 1123 58
17.6.2021 4 13 0 17 1130 38
18.6.2021 4 13 5 22 1109 19
19.6.2021 1112
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20.6.2021 1112

21.6.2021 9 0 46 55 1112 48
22.6.2021 10 3 14 1119 25
23.6.2021 11 23 49 83 1108 47
24.6.2021 16 3 21 1144 61
25.6.2021 26 33 66 1104 45
26.6.2021 1125

27.6.2021 1125

28.6.2021 0 1 45 46 1125 71
29.6.2021 23 2 28 1100 67
30.6.2021 7 0 48 55 1061 49

The simulation model was based on the floor plan of the warehouse hall, which consists of a cooling, freezing,
and dry goods section. The capacity of the simulation model of the warehouse for cooling and frozen goods was
determined according to input information from the focused company:

-Cooled goods warehouse with 400 pallet spaces;

-Frozen goods warehouse with 300 pallet spaces;

-Dry goods warehouse, 120 pallet spaces.

The output of the simulation was the graphic course of movements in the warehouse for a specific month,
selected by the company as reference, since the seasonality of consumption in selected types of goods is
significantly manifested during the year, Fig. 1.
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Fig. 1. Receiving into the TX Plant Simulation warehouse according to measured values — printscreen from software
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Fig. 2 illustrates the integrated 2D/3D simulation model in TX Plant Simulation, which is used to design and
evaluate future warehouse operations. The 2D view enables precise modelling of material flows and control
logic, while the 3D environment verifies spatial layout, resource interactions, and overall operability. Workflow
logic is algorithmized using SIM Talk, allowing for the implementation of dynamic routing, prioritization rules,
and adaptive buffer management. The proposed future warehouse workflow was verified on the simulation
model, confirming the feasibility and stability of planned processes before implementation. The model thus
serves as a robust tool for assessing scenarios and supporting the optimisation of warehouse performance and
flexibility.
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Fig. 2. 2/3D simulation model and algorithmization of warehouse workflow in Tx Plant Simulation using the SIM Talk
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Based on the course of the simulation, Fig. 2, a peak point was determined, which was the reference for
processing the prediction until 2030, Tab.2 The growth coefficient determined by the company was % of the

turnover from the given peak day, Fig. 3

Table 2. Forecast of product range growth by selected company

% 2023 2024 2025 2026 2027 2028 2029 2030
Mayonnaise and condiments | 5.0% 5.0% 5.0% ]23.3% ]23.3% ]23.3% ]23.3% |]23.3%
Marinated 5.0% 5.0% 5.0% 5.1% 5.1% 5.1% 5.1% 5.1%
Spreads 5.0% 5.0% 5.0% | 12.3% | 12.3% | 12.3% | 12.3% | 12.3%
Fish salads 5.0% 5.0% 5.0% |21.9% 121.9% 121.9% |21.9% ]21.9%
Salted 5.0% 5.0% 50% | 2.0% | 2.0% ] 2.0% ] 2.0% | 2.0%
Other salads 5.0% 5.0% 5.0% | 14.3% | 14.3% | 14.3% | 14.3% | 14.3%
Mayonnaise salad 5,0% ]5,0% ]5,0% |143% |143% |14.3% |14.3% | 14.3%
Cod 5.0% 5.0% 5.0% 7.4% 7.4% | 7.4% | 7.4% | 7.4%
Smoked 5.0% 5.0% 5.0% |21.2% 121.2% 121.2% |21.2% |21.2%
Products - frozen 5.0% 5.0% 5.0% 1.3% 1.3% 1.3% 1.3% 1.3%

The growth prediction is processed in Tab. 3. Products or raw materials were divided by the company into
groups, see Fig. 4. Depending on the defined objectives of the simulation study, experiments are then carried
out. The test plan sets out the input data, objectives, and expected results from the simulation run. It is also
important to define the time frame for the simulation experiments so that the results are relevant and realistic.
Simulation runs can last several hours, depending on the conditions. The input and output data and basic
parameters of the simulation model must also be documented for each experiment carried out.
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Fig. 3. Warehouse refrigerated and frozen items — peak for February

The priority objectives that can be defined when using simulation tools, and which were also taken into account

when solving the study, include:

e minimise the lead times of production and logistics processes;
maximise the use of machines, equipment, and warehouse space;

[ ]
e minimise the level of inventory;
[ ]

maximise the flexibility of deliveries (input and output).
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All defined objectives must be collected and statistically analysed at the end of the simulation cycles, thus
achieving a certain required level of concretisation for the simulation model.

Table 3. The growth prediction of products

2022 2023 2024 2025 2026 2027 2028 2029 2030
Chilled other 170 170 170 170 170 170 170 170 170
Frozen 359 371 383 399 403 408 411 413 415
Spreads 6 6 6 7 7 7 7 7 7
Mayonnaise 5 5 5 5 6 6 7 7 8
Marinated 63 64 65 66 68 70 73 74 75
Salads other 42 43 44 47 51 59 65 74 83
Mayonnaise salads 34 34 35 36 41 43 47 52 56
Cod 147 154 161 168 178 190 204 218 233
Fish salads 19 20 20 20 22 26 31 34 39
Salted 7 7 7 7 7 8 8 8 8
Smoked 6 6 6 6 7 8 11 12 15
Froneri 112 112 112 112 112 112 112 112 112
Raw material 259 259 259 259 259 259 259 259 259
Frozen fish 112 112 112 112 112 112 112 112 112
Total frozen 842 854 866 882 886 891 894 896 898
Total chilled 499 509 519 532 557 587 623 656 694
Total total 1341 1363 1385 1414 1443 1478 1517 1552 1592
Refrigerated items Frozen items
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70 623 66 - 900 goy 894 8% 8%
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Fig. 4. Graphical display of stock movement prediction until 2030 according to peak 9.2.2022

Fig. 3 and Fig. 4 present analytical outputs supporting long-term capacity planning for the storage of
refrigerated and frozen items. Fig. 3 presents the daily number of pallets of refrigerated (left chart) and frozen
items (right chart) throughout February 2022, identified as the most demanding month in terms of storage
capacity requirements. In the left chart, the number of refrigerated pallets remains consistently high and
relatively stable, mostly ranging between 560-630 pallets. Minor fluctuations, highlighted by the marked point,
represent short-term variations caused by irregular deliveries or accelerated dispatching. This peak-load profile
is essential for evaluating whether the existing chilled-storage capacity can sustainably absorb seasonal demand.
The right chart shows more pronounced fluctuations in the number of frozen pallets, varying approximately
between 280-490 pallets. The highlighted area indicates days with a significant drop followed by a rapid
increase in storage occupancy. Such variability reflects higher demand dynamics and more complex planning
requirements in the frozen-goods warehouse. Identifying these extreme values enables accurate sizing of
freezing capacity, optimisation of material handling, and planning of the necessary operational buffer. The
outputs presented in Fig. 3 form a key basis for long-term capacity planning, as they reveal seasonal peaks,
logistical constraints, and areas where infrastructure reinforcement, process optimisation, or inventory policy
adjustments may be needed. Fig. 4 illustrates the predicted development of pallet quantities for refrigerated and
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frozen items up to the year 2030. The forecast shows a continuous increase in required pallet capacity for both
categories. Refrigerated items grew from approximately 499 pallets in 2022 to about 694 pallets in 2030,
indicating a steady upward trend and a gradual acceleration in later years. Frozen items follow a similar pattern,
rising from around 842 pallets in 2022 to roughly 898 pallets in 2030, though with a more moderate increase
and signs of stabilisation after 2026. These projections reflect long-term growth in storage demand, with frozen
items consistently requiring higher capacity than refrigerated ones. This model applies extrapolation of
historical trends and accounts for long-term changes in demand, enabling simulation of future capacity needs.
The prediction supports strategic decision-making regarding infrastructure investments, warehouse process
optimisation, and inventory policy adjustments. The outputs of both figures provide an essential basis for
designing a flexible, scalable, and long-term sustainable warehouse management system.

Possibilities of using DDMRP data in simulation using TX Plant Simulation
The DDMRP (Demand Driven Material Requirements Planning) methodology brings a modern approach to
planning and managing inventories, which is based on real demand and takes into account dynamic changes in
the supply chain. Outputs from DDMRP — such as buffer sizes, protection zones, dynamic replenishment signals
or demand profiles — represent valuable data that can be effectively used in the simulation of logistics and
production processes in the Tecnomatix Plant Simulation software.
TX Plant Simulation is a tool that enables detailed modelling, analysis and optimisation of business processes.
Connecting DDMRP data to this simulation environment allows you to verify the impact of planning decisions
in a safe, virtual environment before their real implementation into practice.
Specific possibilities of using DDMRP data in TX Plant Simulation:
1.Simulation of buffer location and behaviour:
e DDMRP defines the optimal locations where storage points (stock buffers) should be located.
e In the simulation, these points can be modelled and their impact on system throughput, warehouse
utilisation, and waiting times can be verified.
2.Dynamic inventory management based on replenishment signals:
e DDMRP generates the so-called "net flow position" - an indicator of when inventory should be replenished.
e In TX, these signals can be modelled as order or production triggers, thus simulating the system's
behaviour in real time.
3.Verification of system capacity and responsiveness:
e Based on DDMRP data, the company's response to changes in demand (e.g. sudden increase/decrease in
orders) can be tested.
e Simulation allows for comparison of multiple scenarios - without using DDMRP, with DDMRP and with
different buffer settings.
4.Analysis of performance indicators:
e Thanks to the simulation, it is possible to measure delivery reliability, inventory levels, lead time and other
KPIs.
e The results show to what extent the implementation of DDMRP helps to achieve more agile and resilient
logistics processes.
Demand Driven MRP (DDMRP) offers benefits in demand-based planning but shows significant limitations
when managing inventory with expiration dates. It does not natively account for expiry, batch tracking, or
FIFO/FEFO principles, increasing the risk of obsolete or wasted stock. [11,12].
Key drawbacks of DDMRP for expiring goods:
e Does not consider shelf life or stock ageing — can lead to accumulation of near-expiry items.
e Lacks FIFO/FEFO issuing logic — older inventory may not be consumed first.
e Limited analytics and simulation tools — harder to prevent spoilage or write-offs.
e Requires integration with WMS or specialised ERP to enable batch and expiry tracking.
Improvement recommendations:
o Integrate DDMRP with WMS — ensure FEFO-based issuing and batch-level tracking.
Include ageing logic in buffer calculations — consider inventory health, not just quantity.
Use BI tools to visualise stock age and quickly act on critical items.
Adopt hybrid planning — use DDMRP for volume, FEFO logic for issuing.
Test through simulation — to optimise buffer sizes and replenishment frequency.
DDMRP alone is insufficient for managing perishable or regulated inventory. However, when combined with
supporting tools, it can be a reliable part of an effective and robust supply chain strategy. The combination of
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the DDMRP methodology with TX Plant Simulation creates a powerful tool for decision support in the field of
production planning and inventory management. Such a combination allows companies to reduce risk when
implementing new planning strategies, optimise inventory, improve system throughput, and prepare for
changing market conditions before real changes occur in operations.

4. CONCLUSIONS

Based on the case study, it can generally be concluded that demand-driven inventory management methods
represent a modern approach to planning inventories and material flows that respond to actual demand, not just
predictions. In the special method, DDMRP uses strategic placement of inventories (so-called buffers) in the
chain and flexible replenishment rules, which help to reduce excess inventory and, at the same time, increase the
availability of materials. In the context of warehouse management, DDMRP plays an important role in deciding
what, where, and how much inventory should be stored to ensure smooth processes. A simulation model, which
was used in the case study created in the TX Plant Simulation environment, allows you to verify the impacts of
implementing DDMRP principles in warehouse management before they are put into practice. Using simulation,
we can test various scenarios - how the warehouse will behave at different inventory levels, how a change in
demand will affect the flow of materials, or where bottlenecks arise. Simulation thus serves as a decision-
making support tool that allows you to reduce the risk of inefficient changes.

The link between demand-driven inventory management and simulation is extremely useful in optimising
warehouse processes. Thanks to simulation, it is possible to verify the suitability of the designed buffers,
evaluate their response to fluctuations in demand, and adjust logistics parameters (e.g., replenishment cycles,
capacity, number of operators). At the same time, it is possible to simulate the impacts of new rules on
warehouse performance, for example, on order fulfilment time, inventory turnover, or warechouse equipment
utilisation.

This combination of demand-driven inventory management, simulation modelling, and active warehouse
management allows the creation of resilient, flexible, and efficient warehouse systems that can quickly respond
to changes in demand and market conditions. In industrial practice, this means higher performance, lower costs,
and more satisfied customers.
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